CORE MATHEMATICS (C) UNIT 1 TEST PAPER 4

- 1. Simplify as far as possible: (i) $\left(3^{\frac{1}{2}} + 3^{-\frac{1}{2}}\right)\left(3^{\frac{3}{2}} 3^{\frac{1}{2}}\right)$, (ii) $\left(4^{-3}\right)^{\frac{1}{3}}$. [4]
- 2. A ball is thrown from a point O. After t seconds its distance from O is x m, where $x = 40t 5t^2$. Find the rate of change of x with time after 3 seconds. [4]
- 3. Differentiate with respect to x:

(i)
$$\frac{1}{2x} - \sqrt{x}$$
, (ii) $\frac{x^2 + 3}{2x^2}$. [7]

4. A rectangular garden is to have length x m, where x > 0. The width of the garden must be 4 m less than its length.

The perimeter of the garden cannot be more than 36 m and the area must be at least 60 m².

- (i) Form a linear inequality and a quadratic inequality in x. [4]
- (ii) Solve your inequalities to find the range of allowable values of x. [5]
- 5. (i) Sketch on one diagram the straight line y = 4 x and the curve $y = \frac{1}{2x}$. [5]

The line intersects the curve at the points P and Q.

- (ii) Show that the x-coordinates of P and Q are 2 + a and 2 a, where a is an irrational number to be found. [5]
- 6. The straight line 4y + 3x = 7 is the tangent at the point P(1, 1) to a circle with centre C.
 - (i) Find an equation of the straight line which passes through P and C. [4]
 - (ii) Given that the x-coordinate of C is 4, find the y-coordinate of C. [2]
 - (iii) Find the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$. [5]
- 7. (i) Express $x^2 4kx + 9$ in the form $(x + p)^2 + q$ where p and q are given in terms of k. [4]
 - (ii) Find the roots of the equation $x^2 4kx + 9 = 0$ in terms of k and deduce the set of values of k for which these roots are real and distinct. [5]
 - (iii) Find the exact roots of the equation $x^2 4kx + 9 = 0$ in the case $k = \sqrt{3}$. [3]

CORE MATHEMATICS 1 (C) TEST PAPER 4 Page 2

- 8. The curve C has equation $y = x^2 5x + 7$.
 - (i) Find the coordinates of the stationary point on C. [3]
 - (ii) Find an equation of the normal to C at the point where x = 1. [5]
 - (iii) Calculate the coordinates of the points where this normal intersects C again. [7]

CORE MATHS 1 (C) TEST PAPER 4 : ANSWERS AND MARK SCHEME

1. (i)
$$9-1=8$$

(ii)
$$4^{-1} = 1/4$$

2.
$$dx/dt = 40 - 10t$$

When t = 3, rate of change = 10 m/s

7

9

10

11

12

3. (i)
$$\frac{d}{dx} \left(\frac{1}{2} x^{-1} - x^{1/2} \right) = -\frac{1}{2} x^{-2} - \frac{1}{2} x^{-1/2} = -\frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{\sqrt{x}} \right)$$

(ii)
$$\frac{d}{dx} \left(\frac{1}{2} + \frac{3}{2} x^{-2} \right) = -3x^{-3} = -\frac{3}{x^3}$$

4. (i) Width =
$$x - 4$$

$$4x - 8 \le 36$$

$$x(x-4) \ge 60$$

(ii)
$$4x \le 44 \text{ so } x \le 11$$

$$x^2 - 4x - 60 \ge 0$$

B2 B3

M₁ A₁

$$(x+6)(x-10) \ge 0$$
, so $x \ge 10$

Hence
$$10 \le x \le 11$$

5. (i) Line sketched, and curve with asymptotes
$$x = 0$$
, $y = 0$

(ii) Intersect where
$$2x(4-x) = 1$$
 $2x^2 - 8x + 1 = 0$
 $2(x-2)^2 - 7 = 0$ $x = 2 \pm \sqrt{7/2}$, so $a = \sqrt{7/2}$

$$y-1=4/3 (x-1)$$

(ii)
$$y-1=4/3$$
 (3) = 4

$$v = 5$$
 at C

(iii) Radius = distance from (1, 1) to (4, 5) = 5

$$(x-4)^2 + (y-5)^2 = 25$$
 $x^2 + y$

$$x^2 + y^2 - 8x - 10y + 16 = 0$$

7. (i)
$$x^2 - 4kx + 9 = (x - 2k)^2 + (9 - 4k^2)$$

(ii)
$$x = 2k \pm \sqrt{4k^2 - 9}$$
, real and distinct for $4k^2 > 9$ $k < -3/2$, $k > 3/2$

(iii) When
$$k = \sqrt{3}$$
, $x = 2\sqrt{3} \pm \sqrt{3} = \sqrt{3}$ or $3\sqrt{3}$

8. (i)
$$2x - 5 = 0$$
 when $x = 2.5$

(ii) At
$$(1, 3)$$
, gradient = -3

(3x-13)(x-1)=0

Normal is
$$y - 3 = 1/3 (x - 1)$$

(iii)
$$3y = x + 8$$

$$3(x^2 - 5x + 7) = x + 8$$
 $3x^2 - 16x + 13 = 0$

x = 1, x = 13/3

$$3x^2 - 16x + 13 = 0$$

When
$$x = 13/3$$
, $y = (13/3 + 8)/3 = 37/9$ Point is (13/3, 37/9)

M1 A1